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Humanoid robots are highly versatile machines
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But humanoid robots are complex machines

➔ expensive, prone to failure, …


For now (and for a long time) humanoids for high-
stakes tasks

➔ “improvisation”

➔ versatility is a requirement


High-stakes: Humans are in control 
The wage of an operator is negligible

➔ (whole-body) Teleoperation (no fully 
autonomous  robot)


In addition: good match between human 
morphology and humanoid robots
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What to do when a robot is damaged?

Motor of the knee 
broken

Learning Reflexes
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Anne T, Dalin E, Bergonzani I, Ivaldi S, Mouret JB. First do not fall: learning to exploit a wall with a damaged humanoid 
robot. Robotics and Automation Letters. 2022.
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 Large Language Models (LLMs) are generalists  
•  not trained on (e.g.) cooking problem

•… but still gets results


 LLMs have some “common sense” (cf frame problem)


LLMs benefit from the experience of “All the writers in the 
world”

… they have some “embodiment”  
… their build own “model” of the world (emergent 
representation)

… this embodiment is from a human shape (experiences of humans)

➔ easier to embed in a humanoid robot

… a generalist model in a generalist robot

➔ (ideally) humanoid robot 
➔ we still need good whole-body control

good match between LLM & Humanoids

Rouxel et al. "Flow matching imitation learning for 
multi-support manipulation." RA-L. (2024).



Key question: connecting language and action
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➔ “Prompt engineering”:

1. describe the situation to the LLM with a VLM / vision

2. prompt what to do to achieve the goal

3. get a structured answer (code, JSON file, etc.)

4. activate pre-trained behaviors


No need for (expensive) training: use pre-trained models

No need for training data (but still put examples in prompts!)

… but how far can we go with generalist models?

Diffusion

(cf image generation)

Prompt Image

VLM, etc.

LLM

Low-level controller

Robot

Policy 
library

Approach 1: foundation models

How many policies do we need?
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Selecting contacts with language
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Words2Contact: Identifying

Support Contacts from Verbal Instructions Using Foundation Models

Dionis Totsila, Quentin Rouxel, Jean-Baptiste Mouret, Serena Ivaldi

Abstract— This paper presents Words2Contact, a language-

guided multi-contact placement pipeline leveraging large lan-

guage models and vision language models. Our method is

a key component for language-assisted teleoperation and

human-robot cooperation, where human operators can in-

struct the robots where to place their support contacts before

Whole-Body reaching or manipulation using natural language.

Words2Contact transforms the verbal instructions of a human

operator into contact placement predictions; it also deals with it-

erative corrections, until the human is satisfied with the contact

location identified in the robot’s field of view. We benchmark

state-of-the-art LLMs and VLMs for size and performance in

contact prediction. We demonstrate the effectiveness of the iter-

ative correction process, showing that users, even naive, quickly

learn how to instruct the system to obtain accurate locations.

Finally, we validate Words2Contact in real-world experiments

with the Talos humanoid robot, instructed by human operators

to place support contacts on different locations and surfaces to

avoid falling when reaching for distant objects.

I. INTRODUCTION

Humanoid robots can use various body parts to create
support contacts to help balance when reaching for difficult
positions. For example, they can use their right hand as
a support on a table, bend forward and reach a cup that
would otherwise be out of reach (Fig. 1); they can lean on
the counter with their left hand to reach for a dish in the
bottom rack of a dishwasher to prevent falling. Solving
these tasks, autonomously, is usually done with multi-contact
Whole-Body planners and controllers [1, 2].

Recent advances in Whole-Body control using quadratic
programming have shown that both torque-controlled robots
[3] and position-controlled robots with force/torque sensors
[4] can effectively utilize additional contact points to increase
their manipulability and improve their balance, but these
control methods require the prior knowledge of the contact
locations. This information is usually the output of a contact
planning algorithm, where typically a planner decides a
sequence of contact locations that enable the robot to solve
its task (e.g., walking, manipulating a complex object) [5].
Contacts computation usually relies on visual or 3D percep-
tion and environment models to look first for suitable contact
surfaces, before deciding whether they are kinematically
feasible for the robot. For example, it is common to look
for flat areas to place the footsteps in humanoid walking [6].

This research was supported by the CPER CyberEntreprises, the
Creativ’Lab platform of Inria/LORIA, the EU Horizon project euROBIN
(GA n.101070596), the France 2030 program through the PEPR O2R
projects AS3 and PI3 (ANR-22-EXOD-007, ANR-22-EXOD-004).

All authors are affiliated with Inria, Université de Lorraine, CNRS, Loria,
F-54000. Contacts: firstname.lastname@inria.fr
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“Place your right hand on top
of the book.”
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θcmd

RGB-D

Natural 
Language

2

1

“Reach for the red cup.”2

1

Words2Contact

Fig. 1: Talos executes the user’s verbal instructions to (1)
lean on a book and (2) reach for an inaccessible cup, yet
in its field of view, using our Words2Contact pipeline.

Unfortunately, selecting contacts, especially when applying
forces, often requires an understanding of the world that
can hardly be modeled. Some surfaces might be flat, but
too fragile for support, like a glass window. Other surfaces
might be off-limits for safety reasons, like the wing of an
aircraft, or they might be slippery, dirty, or unstable. Overall,
in many real-world situations, the choice of support contacts
is likely to require human expertise at some point to be
deployed outside of a laboratory. Giving the power to human
experts to guide the robot and choose the contact locations
for them is therefore a very desirable feature.

Human guidance in contact selection is ideal for
teleoperated robots in remote maintenance or hazardous
scenarios and for collaborative robots cooperating and
working side-by-side with humans. For example, a remote
operator could instruct the robot to place one end-effector on
a wall to lift one foot, and a factory worker could instruct the
robot to reach a handle with one end-effector and take a fallen
tool with the other one. In these situations, language-based
instructions provide a natural communication channel and free
the hands of the operator, nor do constrain the human worker
to use computer interfaces to instruct the robot on what to do.

Giving instructions in natural language has long been
a dream of the robotics community [7, 8, 9]. For years,
this goal eluded researchers due to two main challenges:
(1) understanding what a sentence means requires a good
intuition of the context and the implicit knowledge, that

Challenges 
Vision + language + actions

Synonyms, periphrases, etc.

Context-dependent


Many ways of saying the same thing

Totsila D, Rouxel Q, Mouret JB, Ivaldi S. (2024). 
Words2Contact: Identifying Support Contacts from Verbal 
Instructions Using Foundation Models.  
Proc. of IEEE Humanoids
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Fig. 2: Words2Contact Pipeline: (1) The user provides the first instruction. The Module Selector (subsec. III-A) classifies
the instruction as “Prediction”, and the Prediction Module (subsec. III-B) uses user input and visual feedback to predict new
contact points. (2) The user want to fix the predicted contact location; their instruction is classified as “correction”, and the Cor-

rection Module (Sec. III-C) adjusts the placements based on user input, visual feedback, and the previous prediction. (3) The
user confirms the corrected contact location, the instruction is classified as “Confirmation”, and the Control Module (Sec. III-D)
uses the SEIKO Multi-Contact Whole-body controller to command the robot’s body part towards the specified contact point.

and resource-intensive to collect, and may introduce biases
based on how the data are collected or generated [27].

Even though the generated plans are often successful, the
ability to use language-based corrections to fix the generated
plans generated with minor adjustments during task execution
can be very useful. For example, Sharma et al. [28] present
a model that integrates natural language and visual feedback
to adjust robot planning costs in real-time, enabling more
dynamic and responsive adaptation to new tasks. “LILAC”
[29] proposes a shared autonomy paradigm that updates the
control space in response to continuous user corrections.
“DROC” [30] further advances this paradigm by enabling
LLM-based robot policies to respond to, remember, and
retrieve feedback efficiently, significantly improving adapt-
ability to natural language instructions. Overall, a correction
mechanism that understands general and abstract corrections,
such as “a bit to the right”, is essential to ensure the reliability
and effectiveness of robotic systems guided by LLMs.

Instead of relying on LLMs solely trained on language, an
alternative idea is to use the same learning architectures as
LLMs, that is, transformers, but train them on multi-modal
robotics data instead of pure text, like in the Robotics
Transformers (RT) line of work [31]. A more popular and
less compute-intensive approach is to use similar large-scale
robotics datasets and incorporate pre-trained language and
vision models with a few trained layers to connect the
components. OpenVLA [32] uses this approach with small
open-source models (7-billion parameters), highlighting the
potential for substantial achievements with smaller models.

Regarding humanoid robots, recent research has focused
on generating human-like motions from text descriptions,
specifically through animation using simulated human-like
articulated models [33, 34]. However, for the problem of
multi-contact planning, we are only aware of a traditional (pre-
LLMs) language processing-based approach, where an n-gram
language model is employed. The goal of this model is to learn
motion as a sequence of transitions, where each word repre-
sents a shape pose, and each sentence represents a motion [9].

III. METHODS

The Words2Contact pipeline (Fig. 2) unfolds as follows:
visual feedback is streamed to the user, who starts by instruct-
ing the robot to place a contact in a specified location. The
initial prediction resulting from this instruction is displayed to
the user. If dissatisfied, the user can either correct the predic-
tion or provide a different instruction until they confirm satis-
faction with the updated predicted target. Once the contact lo-
cation is confirmed, the robot proceeds to execute the contact
placement at the specified point using the SEIKO controller.

To achieve this, we split the contact prediction task into
three sub-modules, each responsible for a specific sub-task:
Prediction, Correction, and Confirmation. This split is
crucial for ensuring that even small models will be able to
effectively handle each stage of the pipeline.

In our approach, we use a single LLM and dynamically
adjust the system prompt (Fig. 3) based on each step of the
pipeline. Furthermore, outputs from the LLM are consistently
constrained to JSON format to ensure a specific desired
structure that simplifies information extraction, in the open
source models we enforce this constraint with grammar-
based token sampling and acceptance [35], whereas for the
proprietary model we follow the documentation instructions1.

For those unfamiliar with LLMs, we want to stress the
difference between the system prompt and the user prompt.
The system prompt is an instruction or message given
to the LLM to guide its responses. This prompt sets the
tone, context, and boundaries for the conversation, helping
the model understand its role and what is expected of it.
Considering the constraints of the task, each module of
the LLM has its own system prompt. Examples of system
prompts are shown in Fig. 3. Whereas, the user prompt is
the input or query provided by the user to the LLM.

A. Module Selector
The Module Selector (Fig. 2) interprets the user’s natural

language prompt and classifies it into one of three categories:
Prediction, Correction, or Confirmation.

1OpenAI Docs: https://tinyurl.com/openaijson

Totsila D, Rouxel Q, Mouret JB, Ivaldi S. (2024). Words2Contact: Identifying Support Contacts from Verbal Instructions Using 
Foundation Models.  
Proc. of IEEE Humanoids
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Contact Point [i, j]
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{
   "chain_of_thought": str
   "position":  "relative" | "absolute"
   "objects": list[str]
}

{
   "chain_of_thought": str
   "x": math expression
   "y": math expression
}

Prompt-Analyzer
LLM

Language Grounded Segmentation
VLM (e.g. CLIPSeg)

Language Grounded Object Detection
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Relative Position Predictor
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User Prompt
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Case 2:
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Object is at [i, j] with width=w, and height = hBounding Box(es)

Case 2:
“Place your hand left from the cup”

“Lean against the white surface
Case 1:
Verbal Instruction

RGB

to text
+

Fig. 4: The Prediction Module(Sec. III-B) uses the LLM to analyze the user’s prompt and returns a JSON file with the chain
of thought, list of objects, and position type (absolute or relative). For absolute positions, a point is extracted via language-
grounded segmentation. For relative positions, bounding boxes are detected, and the LLM calculates the 2D target position.

corrections relevant to the previous correction, for example
“Move to the right.”, “Now, move twice as much as before.”.

Fig. 5: In the Correction Module (Sec. III-C) the LLM
detects object descriptions in the user prompt, the VLM
identifies their bounding boxes, and then use the bounding
box(es) identified by the VLM along with the current target
position, interaction history, and the user’s instruction to
determine a new candidate contact [i,j].

D. Control Module

Once the user confirms that they are satisfied with the
current contact point showed to them in image space, we
query the LLM one final time, with the end-effector selector
prompt (Fig. 3-c), to select the robot’s end-effector that will be
used for contact (e.g. right or left hand) and the task type (e.g.
support contact or reaching). Then, we extract the 3D position,
in camera frame Xcam=[x,y,z]cam, from the pointcloud.

The Control Module then relies on the SEIKO Retargeting
[41, 42, 43] and Controller [44] to figure the commanded
motion and smoothly establish the new contact.

The SEIKO Controller takes as input the discrete selection
of the end-effector, as well as the 3D position of the selected
contact point [i,j] in camera frame Xcam=[x,y,z]cam. Then
transforms it to robot’s world frame using the robot’s forward
kinematics X0=T0Xcam. It then generates a spline-based
Cartesian trajectory from the current effector position Xt to
reach the desired contact point X0. SEIKO Retargeting uses
a model-based Sequential Quadratic Programming (SQP)
optimization to compute feasible whole-body configurations
(joint positions and contact forces) that track the Cartesian
effector pose commands. The contact forces are automatically
determined by the optimization problem of SEIKO, so only
the contact locations are necessary, to enforce safety and
balance constraints

It automatically adjusts the robot’s motion to enforce
safety and balance constraints. SEIKO Controller integrates
an explicit model of joint flexibility and employs an SQP
whole-body admittance formulation to regulate contact forces
on our position-controlled humanoid robot. This controller
is crucial for performing the distant reaching tasks that
challenge the system’s balance, as it enhances robustness
against model errors.

Fig. 6: The control module identifies the end-effector
that should be used, and the task’s type then the robot is
controlled through SEIKO Retargeting and Control.

Totsila D, Rouxel Q, Mouret JB, Ivaldi S. (2024). Words2Contact: Identifying Support Contacts from Verbal Instructions Using 
Foundation Models.  
Proc. of IEEE Humanoids
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approach 1 — foundation models — no training

Totsila D, Rouxel Q, Mouret JB, Ivaldi S. 
(2024). Words2Contact: Identifying Support 
Contacts from Verbal Instructions Using 
Foundation Models.  
Proc. of IEEE Humanoids



Flow Matching Imitation Learning
for Multi-Support Manipulation

Quentin Rouxel, Andrea Ferrari, Serena Ivaldi, and Jean-Baptiste Mouret

Abstract—Humanoid robots could benefit from using their
upper bodies for support contacts, enhancing their workspace,
stability, and ability to perform contact-rich and pushing
tasks. To address this challenge, we devised a unified approach
that combines an optimization-based multi-contact whole-body
controller with Flow Matching, a recently introduced method
capable of generating multi-modal trajectory distributions for
imitation learning. In simulation, we show that Flow Matching
is more appropriate for robotics than Diffusion. On a real
full-size humanoid robot (Talos), we demonstrate that our
approach can learn a whole-body non-prehensile box-pushing
task and that the robot can close dishwasher drawers by adding
contacts with its free hand when needed for balance. We also
introduce a shared autonomy mode for assisted teleoperation,
providing automatic contact placement for tasks not covered in
the demonstrations. Full experimental videos are available at:
https://hucebot.github.io/flow_multisupport_website/

I. INTRODUCTION

In spite of the many advances in whole-body control [],
the tasks of most current humanoid robots are implicitly split
into two parts: feet for locomotion and support, and hands for
manipulation and other interactions with the world. This view
overlooks all the possible uses of arms as additional support as
well as non-prehensile manipulation like pushing with the side
of the forearm, sliding and, more generally using the body of
the robot as a potential contact surface. By contrast, humans
routinely lean on a table to grasp a distant object, push on a
wall while pulling a heavy door, exploit handrails to increase
their stability, keep a door open with their shoulder, etc.

In this work, we focus on these scenarios that leverage
whole-body motion and multi-contact strategies to extend
the manipulation capabilities. We term them multi-support
manipulation tasks, by analogy with the traditional single and
double support cases for humanoids.

Our objective is to design control policies for humanoid
robots that can leverage contacts when needed, both for adding
support and perform non-prehensile tasks. On the one hand,
model-based planners could search for support contacts, as this
is often done with footstep planning [], but this requires a very
good understanding of the world, as many surfaces are not
suitable contact surface (fragile surfaces like windows, slippery
surfaces, ...). On the other hand, model-based approaches

The authors are with Inria, CNRS, Université de Lorraine, France.
firstname.lastname@inria.fr

This research was supported by the CPER CyberEntreprises, the
Creativ’Lab platform of Inria/LORIA, the EU Horizon project euROBIN (GA
n.101070596), the France 2030 program through project PEPR O2R AS3
and PI3 (ANR-22-EXOD-007, ANR-22-EXOD-004).
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Figure 1. To perform multi-support tasks, the Talos humanoid robot uses its
right hand as an additional support to extend its reach and maintain balance.
Imitation learning allows the robot to autonomously solve these tasks or
assist a human operator with automatic contact placement.

do not work well for pushing or sliding tasks because of the
non-linear dynamics of sliding and friction [].

In this work, we address these two challenges with a single,
unified method: imitation learning for whole-body multi-
support motions. Hence, by demonstrating when and how to
establish contacts, we can leverage the human “common sense”
to choose contacts, avoid modelling explicitly the environment
and the contacts, and achieve real-time performance. While
imitation learning has been applied to many tasks, it has
not yet been investigated, to the best of our knowledge, for
whole-body multi-contact and contact switching scenarios.

Many approaches have been proposed for imitation learning
in robotics. The most traditional approach is behavior cloning,
in which a neural network is learned with supervised learning
to associate states to actions [1]. To exploit the structure of
trajectories and control, a popular approach has been Dynamic
Motion Primitives [2] and various extensions like Probabilistic
Motion Primitives [3]. However, these methods tend to not
scale well to high-dimensional inputs, like images, and large
datasets. In addition, most of them are unable to model
multi-modal distributions of demonstrations, which limits
them to straightforward tasks. If a humanoid can reach two
contact locations, left or right (Fig. 6), to add an extra support
for balance, averaging all demonstrations without accounting
for the non-convex nature of the feasible contact placements
will result in the policy averaging left and right positions and
placing the contact in-between the two, causing the robot to fall.

… but how to choose additional contacts?

16

Concept: use imitation learning


Example: the operator wants to reach with the right 
hand a bottle that is too far

… and the robot uses the left hand to add a contact


Why not automatic placement? 
• difficult (many papers about this!)

• might make “common sense mistakes” (e.g., 

putting weight on a window)

• requires a very good perception / world model 


… and recent progresses in imitation learning (diffusion 
policies)



17

Flow Matching Imitation Learning
for Multi-Support Manipulation

Quentin Rouxel, Andrea Ferrari, Serena Ivaldi, and Jean-Baptiste Mouret

Abstract—Humanoid robots could benefit from using their
upper bodies for support contacts, enhancing their workspace,
stability, and ability to perform contact-rich and pushing
tasks. To address this challenge, we devised a unified approach
that combines an optimization-based multi-contact whole-body
controller with Flow Matching, a recently introduced method
capable of generating multi-modal trajectory distributions for
imitation learning. In simulation, we show that Flow Matching
is more appropriate for robotics than Diffusion. On a real
full-size humanoid robot (Talos), we demonstrate that our
approach can learn a whole-body non-prehensile box-pushing
task and that the robot can close dishwasher drawers by adding
contacts with its free hand when needed for balance. We also
introduce a shared autonomy mode for assisted teleoperation,
providing automatic contact placement for tasks not covered in
the demonstrations. Full experimental videos are available at:
https://hucebot.github.io/flow_multisupport_website/

I. INTRODUCTION

In spite of the many advances in whole-body control [],
the tasks of most current humanoid robots are implicitly split
into two parts: feet for locomotion and support, and hands for
manipulation and other interactions with the world. This view
overlooks all the possible uses of arms as additional support as
well as non-prehensile manipulation like pushing with the side
of the forearm, sliding and, more generally using the body of
the robot as a potential contact surface. By contrast, humans
routinely lean on a table to grasp a distant object, push on a
wall while pulling a heavy door, exploit handrails to increase
their stability, keep a door open with their shoulder, etc.

In this work, we focus on these scenarios that leverage
whole-body motion and multi-contact strategies to extend
the manipulation capabilities. We term them multi-support
manipulation tasks, by analogy with the traditional single and
double support cases for humanoids.

Our objective is to design control policies for humanoid
robots that can leverage contacts when needed, both for adding
support and perform non-prehensile tasks. On the one hand,
model-based planners could search for support contacts, as this
is often done with footstep planning [], but this requires a very
good understanding of the world, as many surfaces are not
suitable contact surface (fragile surfaces like windows, slippery
surfaces, ...). On the other hand, model-based approaches

The authors are with Inria, CNRS, Université de Lorraine, France.
firstname.lastname@inria.fr

This research was supported by the CPER CyberEntreprises, the
Creativ’Lab platform of Inria/LORIA, the EU Horizon project euROBIN (GA
n.101070596), the France 2030 program through project PEPR O2R AS3
and PI3 (ANR-22-EXOD-007, ANR-22-EXOD-004).
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Figure 1. To perform multi-support tasks, the Talos humanoid robot uses its
right hand as an additional support to extend its reach and maintain balance.
Imitation learning allows the robot to autonomously solve these tasks or
assist a human operator with automatic contact placement.

do not work well for pushing or sliding tasks because of the
non-linear dynamics of sliding and friction [].

In this work, we address these two challenges with a single,
unified method: imitation learning for whole-body multi-
support motions. Hence, by demonstrating when and how to
establish contacts, we can leverage the human “common sense”
to choose contacts, avoid modelling explicitly the environment
and the contacts, and achieve real-time performance. While
imitation learning has been applied to many tasks, it has
not yet been investigated, to the best of our knowledge, for
whole-body multi-contact and contact switching scenarios.

Many approaches have been proposed for imitation learning
in robotics. The most traditional approach is behavior cloning,
in which a neural network is learned with supervised learning
to associate states to actions [1]. To exploit the structure of
trajectories and control, a popular approach has been Dynamic
Motion Primitives [2] and various extensions like Probabilistic
Motion Primitives [3]. However, these methods tend to not
scale well to high-dimensional inputs, like images, and large
datasets. In addition, most of them are unable to model
multi-modal distributions of demonstrations, which limits
them to straightforward tasks. If a humanoid can reach two
contact locations, left or right (Fig. 6), to add an extra support
for balance, averaging all demonstrations without accounting
for the non-convex nature of the feasible contact placements
will result in the policy averaging left and right positions and
placing the contact in-between the two, causing the robot to fall.

Method Inference
Time (ms)

In Distribution Out of Distribution
Success

Rate
Median±MAD

Error (cm)
Success

Rate
Median±MAD

Error (cm)

Demonstrations – 100% 1.3±0.6 – –
Flow 20 steps 35±4 99% 1.4±0.5 78% 3.4±2.0

DDPM 100 steps 178±12 100% 1.5±0.5 69% 4.0±1.7
DDIM 20 steps 39±4 100% 1.4±0.5 67% 3.9±1.8

Supervised Learning 3±1 92% 4.1±1.4 52% 7.6±4.0

Figure 6. Simulated contact reaching task: The robot extends its right hand to establish contact with one of the two support platforms (left), where the
initial position of the hand and the position of the platforms relative to the robot are randomized. Autonomous mode results over 100 trials for each model,
both in and out of distribution, are reported (right). Success rate (contact switch activated and distance to closest platform < 8 cm), and the median and
median absolute deviation (MAD) of contact placement error (if contact was established) are detailed.

robot with a direct line of sight, and uses separate 6-DoF input
devices1 to command the velocity of each hand, providing
after integration the effector pose commands.

The policy is trained in Python using the PyTorch library
with GPU acceleration, whereas online inference is performed
in C++ on the CPU (Intel i9-9880H 2.30 GHz). See Table I
for hyperparameters. The flow model is implemented as a 1D
convolutional U-Net neural network with residual connections,
akin to the model implemented2 in [23]. For each effector,
the predicted poses in the output trajectories (Xeff i

l )k+N
l=k are

encoded relative to the pose in the input state Xeff i
k such that

all predicted positions and orientations trajectories start from
zero. The effector orientations in the input state are encoded
using the 6D rotation representation [35], whereas the relative
orientations in the predicted output trajectories are expressed
as 3D axis-angle vectors.

SEIKO Retargeting and Controller are implemented3 in
C++, using the Pinocchio rigid body library, the QP solver
QuadProg and run onboard the robot at 500 Hz. The fiducal
external markers are detected in the color image using the
AprilTag library at 30 Hz.

B. Simulated Reaching and Contact Placement Task

In line with the comparisons made in recent works [28]–[30],
we compare in our experiments the Flow Matching method
for robotics applications with its Diffusion counterpart and
a classical supervised learning baseline. We present statistical
results for the following variant methods:
• Demonstrations: dataset collected by the expert human

operator and used to train all autonomous policies.
• Flow 20 steps: Flow Matching method described in Sec-

tion III-C. The flow is integrated (see Fig. 4) over 20 steps.
• DDPM 100 steps: vanilla DDPM method [4] trained with
100 denoising steps, and inferred with 100 steps.

• DDIM 20 steps: uses the same trained model as DDPM, but is
inferred with the Diffusion implicit variant [25] and 20 steps,
expected to be faster than DDPM at the expense of quality.

• Supervised Learning: classical behavior cloning method [1]
trained with Mean Square Error (MSE) loss. It has same

13Dconnexion SpaceMouse: https://3dconnexion.com/uk/spacemouse/
2Diffusion Policy code: https://github.com/real-stanford/diffusion_policy
3SEIKO implementation: https://github.com/hucebot/seiko_controller_code

inputs-outputs and also predicts trajectories, but it is not a
generative process and does not capture the data distribution.
We evaluate the main capabilities of policies: first, their

ability to autonomously perform contact switching as described
in Section III-B; second, their capacity to learn from demonstra-
tions exhibiting a multi-modal distribution; third, we measure
their accuracy in placing contacts, which is essential for robotics
applications; and fourth their inference time. Within the sim-
ulated task illustrated in Fig. 6, we teleoperated 86 demonstra-
tions totaling 2442 s. The hand was placed randomly on either
the left or right platform, regardless of the initial state to create
a bimodal distribution. An external marker is attached on top of
the left platform, with the position of the right platform fixed
relative to the left. We also assess how the policies generalize
out-of-distribution, where initial hand positions and platform
positions are uniformly sampled from a wider range that
encompass and excludes the range used for in-distribution cases.

Both Flow and Diffusion approaches outperform the baseline
(Fig. 6), as supervised behavior cloning is hindered by the
multi-modal nature of the distribution, causing the baseline
to average out across non-convex spaces. Flow Matching also
slightly outperforms Diffusion in out-of-distribution cases,
with favorable inference time and accuracy.

C. Simulated Non-Prehensile Manipulation Task
We then evaluated our proposed method on the more

challenging non-prehensile manipulation task shown in Fig. 7.
This task aims to thoroughly test multi-support and whole-body
strategies with higher multi-modality, necessitating both the
addition and removal of contacts. The humanoid robot must
use both hands to push a concave T-shaped 3D object on a
planar table surface, maneuvering it to match a target position
and orientation fixed on the table. Solving the task strongly
relies on multi-support capabilities, as the robot can not reach
forward far enough to push the object from behind without
using its right hand as additional support. The robot interacts
with the box using contact-rich dynamics that heavily depend
on geometries of the box and robot’s effector, as well as friction
and sliding properties of surfaces. The task allows for various
multi-modal strategies by applying different pushing sequences
on the box’s sides. It requires several contact switches to push
the box left and right with both hands, followed by precise final
adjustments. This box-pushing task is a more challenging 3D

Rouxel Q, Ferrari A, Ivaldi S, Mouret JB. (2024). Flow matching imitation learning for multi-support manipulation 
Proc. of IEEE Humanoids.
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We can do multi-contact control with a position-controlled robot

Multi-contact is a key for humanoid robots

Learning to place contact by imitation (flow matching) is promising

We can use LLMs to explain contacts

… even with LLMs and imitation, we need multi-contact whole-body 
control!

Conclusion  
 multi-contact



The next questions
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 1. We are back to symbols and open-loop plans 
➔ How can we blend (vs activate) motion with language?

➔ Continuous interaction / interruptions / etc.

➔ Other sensors (IMU, Force, skin, …) 
➔ Physics consistency? Hallucinations?


2. Prompt engineering: a new programming language?

➔ automate? find techniques?  

3. We need data with language (for training and evaluation) 
• What data? with or without robot? Others?

• Collective effort? (all the labs unite, cf Wikipedia)

• Who pays for it? (storage, curation)

• Youtube videos? existing datasets? annotations?

•  Will we have enough data?


4. We need pre-trained LLMs, VLMS, etc. 
• train academic models? specialized for robotics?

• collective effort?

• How to reward something already done by others?




Conclusion
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LLMs: a new era for robotics 
robots that can understand verbal instructions (and speak)

robots with common sense

… combined with vision + voice (deep learning)

… but not (for now) smarter than humans!


A good match between humanoid robots and LLMs 
 generic models for generic tasks (vs specialized)

 ➔ a generalist humanoid robot? 

We need data (including for evaluation) 
 collective organization? simulation?


We need models 
 collective organization?


We still need good whole-body control 
LLMs do not replace control
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Prescient teleoperation
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training

robot 
cameras

robot 
controller

motion
anticipation

teleoperated
robot

ProMPs
modulation

ProMPs
update

motion
recognition

communication
channel

human
operator

motion
retargeting

ProMPs
learning

demo robot
trajectories

motion
retargeting

human
demonstrations

delay

delay 
compensation

delay

Motion prediction

•Learn predictors of the operator's motion with machine learning 


•Predict the motion of the operator (and therefore of the robot)

•Execute the prediction of the future (taking into account back & forth delay)

•… so that the visual feedback appears synchronous (but is actually delayed)

•Continuously update the prediction when commands are received


execute commands before having received them!

Penco L, Mouret JB, Ivaldi S. Prescient teleoperation of humanoid robots. arXiv preprint arXiv:2107.01281. 2021 Jul 2.
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We know: 
• the posture of the robot 
• the position of the wall wrt the robot 

➞ Where should the robot put the hand? 

Decision in 100-200 ms max
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 Train “Visual-Language-Action”  (VLA) 
 No model “from scratch” (usually blend of pretrained and trained)

 Several attempts (manipulation) to get large datasets of image-language-motion (mostly US):

•  Open X-Embodiment (RT-X): 22 robots, 21 institutions, 527 skills (160266 tasks).

•  Aloha unleashed: 26,000 demonstrations for 5 tasks on a real robot 


Zhao, Tony Z., et al.  (2024) “Aloha unleashed: A simple recipe for robot dexterity." CoRL 
Vuong, Quan, et al. (2023) “Open x-embodiment: Robotic learning datasets and RT-x models." arXiv preprint arXiv:2310.08864

Kim, M. J., et al. (2024). OpenVLA: An Open-Source Vision-Language-Action Model. arXiv preprint arXiv:2406.09246.

Key question: connecting language and action
Approach 2: data-driven


